When the Earth Speaks – QuakeGuard Listens

Every day, vibrations beneath our feet carry signs of movement, impact, or danger — but most go unheard.

What if we could turn the ground itself into a global sensor network?

The problem: Unseen Threats. Unheard Signals.

- Borders and critical infrastructures are under constant stress — from natural and man-made events.
- Explosions, tunneling, or heavy vehicle movement often go undetected in real time.
- Existing monitoring systems are expensive, centralized, and slow to react.

The Opportunity: A New Layer of Awareness – From Below the Surface

- The same data that can warn of earthquakes can also reveal hostile activity.
- Dual-use sensing: the next frontier in defense and civil protection.
- The EU's security depends on situational awareness, low-cost sensing, and resilience.

The Solution: Introducing QuakeGuard

An Al-powered network of **seismic and acoustic sensors** that detects vibrations, explosions, and underground activity — in real time.

- Built on Raspberry Pi and Raspberry Shake hardware.
- Edge AI + cloud fusion for event classification.
- Instant alerts and map visualization.
- Modular, low-cost, rapidly deployable.

How It Works

Smart Detection. Fast Response.

Flow:

- Sensors record seismic + acoustic signals.
- Edge Al filters and classifies events.
- 3 Cloud AI fuses data across nodes.
- 4 Alerts sent to users or to Intelligence, Surveillance, Reconnaissance (ISR) systems.

Dual-Use Value: From Defense to Civil Protection

Defense Use:

- Border surveillance and underground activity detection.
- Integration with ISR and C2 systems.
- Protection of critical military sites.

Civil Use:

- Early-warning for earthquakes, explosions, or industrial vibrations.
- Infrastructure safety (bridges, tunnels, pipelines).
- Citizen awareness through low-cost IoT.

Innovation & Technology - Al at the Edge – Built on Existing Sensors Network and Interoperability

- Edge ML models (TensorFlow Lite) for seismic + audio classification.
- Cloud fusion for multi-sensor correlation.
- Designed to be interoperable with European ISR frameworks and NATO STANAG data standards.
- Based on open hardware and software (Raspberry Pi ecosystem).

RJAM

R12

This Shake sensor. The

More data

LIVE Sti

• Last 24

• Last 24

Build y

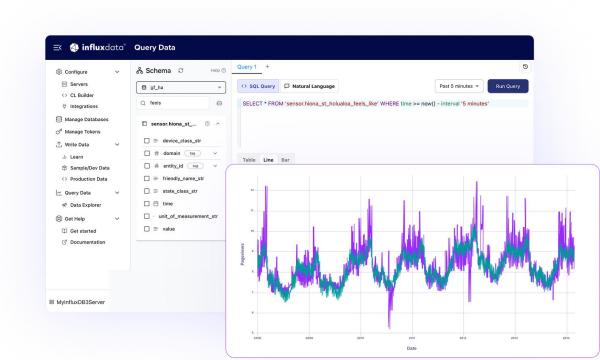
Market & Impact: Where QuakeGuard Delivers Value

Sectors:

- Defense & Border Security (EU, NATO).
- Civil Protection & Disaster Response.
- Energy & Infrastructure
 Operators.

Impact

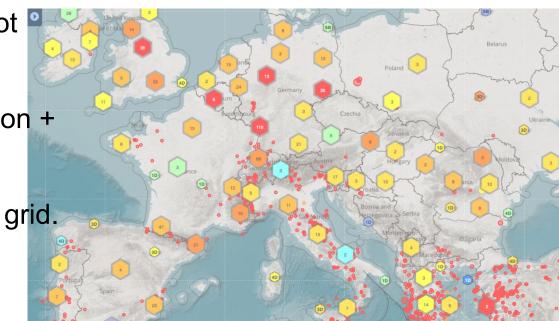
- <2 seconds detection latency.
- Scalable to thousands of sensors.
- Scaling through integration, not replacement.


Competitive advantage - Why QuakeGuard Wins

- Dual intelligence seismic + acoustic
- Open, low-cost hardware = rapid scaling.
- Al-driven detection = minimal false positives.
- Designed for both civilian networks and defense-grade ISR.

Business model: Seismic-as-a-Service

- Subscription-based for civil customers (alerts & analytics).
- Partnership/licensing for defense and infrastructure clients.
- Hardware sold or leased (plug-and-play sensors).


Roadmap: From Prototype to European Deployment

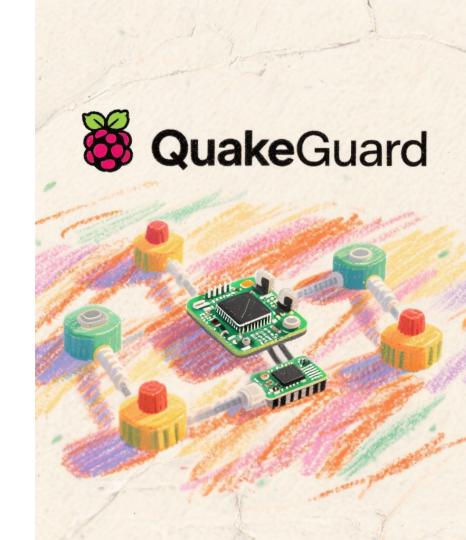
 Q1–Q2 2026: MVP validation, Al accuracy tests.

Q3–Q4 2026: Civilian pilot deployments.

 2027: Dual-use certification + ISR integration.

2027+: EU-wide sensing grid.

The Team Cross-domain expertise. One vision: intelligent protection.


- Catalin Chivu Programming & Cybersecurity & Al Systems
- Vlad Oprea Programming, Al Systems, Machine Learning
- Searching for: advisors in defense innovation, sensors and seismology.

The Ask

 Seeking €25K in grants or pilot funding for field validation.

 Looking for partners in defense, civil protection, and research.

 Invitation to build Europe's first distributed sensing shield.

QuakeGuard – Turning Vibrations into Intelligence.

hello@quakeguard.net

Raspberry Shake devices detect mechanical vibrations (0.1–29 Hz) and infrasound or pressure waves (0.05–20 Hz)

1. Mechanical Vibrations (0.1 – 29 Hz)

This is the frequency band covered by Raspberry Shake's seismographs (such as RS1D, RS3D, and RS4D). Vibrations in this range correspond closely to the movement of heavy ground-based objects:

Vibration Source	Typical Dominant Frequency	Detection Implication
Tanks & armored vehicles	1 – 10 Hz	Very similar to truck/tractor vibrations studied in the 1–20 Hz range pmc.ncbi.nlm.nih +1. Easily within the detectable band of RS4D.
Truck convoys / road traffic	1 – 20 Hz	Produces continuous low-frequency ground waves that Raspberry Shakes regularly record as cultural noise.
Footsteps / soldiers walking	> 20 Hz (localized, weak amplitude)	Not typically detectable beyond a few meters.
Blasts from artillery / detonations	0.5 – 15 Hz (ground- coupled)	Within the RS's passband, strong signals may be recorded several km away depending on soil type and terrain.

and infrasound or pressure waves (0.05-20 Hz)

Raspberry Shake devices detect mechanical vibrations (0.1–29 Hz)

Up to tens of kilometres, depending on atmospheric

distinctive patterns can be seen.

2. Low Frequency Explosions and Pressure Waves (0.05 – 20 Hz)

This range refers to the infrasound domain. The RS&BOOM and Raspberry Boom models detect both infrasonic (below 20 Hz) and

Frequency

0.5 - 5 Hz

Artillery, heavy

Large bombs or rocket

Low-altitude jets /

explosions

launches

helicopters

audible (20-40 Hz) pressure oscillations. These waves travel long distances in the atmosphere—farther than seismic waves in soft ground—by refracting between atmospheric layers. Source Type **Dominant Infrasound** Typical Detection Range

conditions. 0.05 - 10 Hz50 – 200+km possible; comparable to volcanic

eruption detections pubs.aip. 1 – 20 Hz Mainly local (within a few kilometres), though

3. Factors Affecting Detection Range

Detection range is determined by:

- Energy of the source: Larger explosions or heavier vehicles release more vibration energy.
- Medium coupling: Hard soil or rock transmits seismic energy better than soft ground.
- Background noise: Urban or windy environments raise the noise floor, reducing sensitivity.
- Weather & atmosphere: For infrasound, temperature and wind profiles strongly affect how far pressure waves propagate.

A practical summary:

- Heavy vehicle convoys → detectable within a few km as seismic signal.
- Explosions / artillery → detectable up to tens of km.
- Major blasts / rocket launches → possibly up to 50-100 km under favorable atmospheric conditions.

Thus, a local array of Raspberry Shake units could clearly register nearby military activity such as convoys or firing exercises, and large distant explosions would appear as identifiable low-frequency events.

Why QuakeGuard integration matters

QuakeGuard extends the ISR and C2 "sensor reach" **beneath the surface** — literally.

Most ISR/C2 systems cover the *sky, sea, and surface*, but have limited sensing for:

- Underground activities (tunnels, subsurface vibrations).
- Blast and shockwave detection (explosions, missile impacts).
- Micro-seismic data that indicates movement or sabotage.

That's where QuakeGuard complements existing ISR architectures — adding a **new sensory domain: the ground**.

How integration works technically

```
QuakeGuard generates geotagged event data in real time:
 "timestamp": "2025-05-19T10:15:00Z",
 "event type": "explosion",
 "lat": 45.123,
 "lon": 26.456.
 "confidence": 0.94,
 "magnitude": 3.2,
 "source": "QG Node 34"
```

This JSON or XML can be formatted according to:

- STANAG 4607 / 4559 (NATO ISR data exchange standards)
- OGC SensorThings API (for civil ISR & environmental networks)
- GeoJSON / WMS feeds for C2 visualization layers

Communication Layer

Each QuakeGuard node could communicate via:

- Secure MQTT or HTTPS → edge-to-cloud ingestion
- Encrypted REST API / WebSocket stream → for ISR data fusion
- NATO FMN Gateway compatibility → for partner networks (optional)

Data is routed into the **ISR fusion layer**, where it could be combined with:

- EO/IR imagery (from satellites & UAVs)
- Radar or SIGINT detections
- Geospatial intelligence (GEOINT) databases

Integration with Command & Control Dashboards

C2 systems could consume QuakeGuard data through:

- REST or WebSocket endpoints feeding map overlays.
- Event triggers that update threat layers in real time.
- **API plug-ins** for systems like *ATAK*, *ESRI ArcGIS*, *COP* (*Common Operational Picture*).

Possible Example Scenarios

Scenario 1 – Border Protection (Dual-use)

- Multiple QuakeGuard sensors along EU's eastern border detect repetitive low-frequency ground motion.
- Data fuses in the ISR hub → flagged as possible tunneling.
- C2 issues a reconnaissance drone task order automatically.

Scenario 2 – Missile Impact Detection

- Explosion shockwave detected by QuakeGuard node cluster.
- Timestamp and coordinates shared instantly with ISR cloud.
- C2 dashboard shows validated impact; rapid-response team deployed.

Scenario 3 – Civil Emergency Coordination

- Small earthquake occurs near a refinery; QuakeGuard nodes confirm vibration pattern.
- Civil C2 center (through API link) issues alert to local responders.